Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all

نویسنده

  • Leonid Gurvits
چکیده

Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) = p(Z), Z ∈ C. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x1, . . . , xn) is a homogeneous H-Stable polynomial of degree n with nonnegative coefficients; degp(i) is the maximum degree of the variable xi, Ci = min(degp(i), i) and Cap(p) = inf xi>0,1≤i≤n p(x1, . . . , xn) x1 · · · xn then the following inequality holds ∂ ∂x1 . . . ∂xn p(0, . . . , 0) ≥ Cap(p) ∏ 2≤i≤n ( Ci − 1 Ci )Ci−1 . This inequality is a vast (and unifying) generalization of the Van der Waerden conjecture on the permanents of doubly stochastic matrices as well as the SchrijverValiant conjecture on the number of perfect matchings in k-regular bipartite graphs. These two famous results correspond to the H-Stable polynomials which are products of linear forms. Our proof is relatively simple and “noncomputational”; it uses just very basic properties of complex numbers and the AM/GM inequality. the electronic journal of combinatorics 15 (2008), #R66 1 1 The permanent, the mixed discriminant, the Van Der Waerden conjecture(s) and homogeneous polynomials Recall that an n × n matrix A is called doubly stochastic if it is nonnegative entry-wise and its every column and row sum to one. The set of n × n doubly stochastic matrices is denoted by Ωn. Let Λ(k, n) denote the set of n × n matrices with nonnegative integer entries and row and column sums all equal to k. We define the following subset of rational doubly stochastic matrices: Ωk,n = {k−1A : A ∈ Λ(k, n)}. In a 1989 paper [2] R.B. Bapat defined the set Dn of doubly stochastic n-tuples of n × n matrices. An n-tuple A = (A1, . . . , An) belongs to Dn iff Ai 0, i.e. Ai is a positive semi-definite matrix, 1 ≤ i ≤ n; trAi = 1 for 1 ≤ i ≤ n; ∑n i=1 Ai = I, where I, as usual, stands for the identity matrix. Recall that the permanent of a square matrix A is defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 2 N ov 2 00 7 Van der Waerden / Schrijver - Valiant like Conjectures and Stable ( aka Hyperbolic ) Homogeneous Polynomials : One Theorem for all

Let p(x1, ..., xn) = p(X), X ∈ R be a homogeneous polynomial of degree n in n real variables. Such polynomial p is called H-Stable if p(z1, ..., zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity intensively used in the PDE theory. The main theorem in this paper states that if p(x1, ..., xn) is a homogeneous ...

متن کامل

m at h . C O ] 1 3 M ay 2 00 8 Van der Waerden / Schrijver - Valiant like Conjectures and Stable ( aka Hyperbolic ) Homogeneous Polynomials : One Theorem for

Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) = p(Z), Z ∈ C. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x1, . . . , xn) is a homog...

متن کامل

Stability, hyperbolicity, and zero localization of functions

This workshop, sponsored by AIM and NSF, was devoted to the emerging theory of stability and hyperbolicity of functions. These notions are well known in the univariate setting, where stability means that all zeros lie in the left-half plane and hyperbolicity means that all zeros are real [CM, Post, Fisk, Rah]. The multivariate generalizations go back to 1950s and are being actively explored now...

متن کامل

A proof of hyperbolic van der Waerden conjecture : the right generalization is the ultimate simplification

Consider a homogeneous polynomial p(z1, ..., zn) of degree n in n complex variables . Assume that this polynomial satisfies the property : |p(z1, ..., zn)| ≥ ∏ 1≤i≤n Re(zi) on the domain {(z1, ..., zn) : Re(zi) ≥ 0, 1 ≤ i ≤ n} . We prove that | ∂ n ∂z1...∂zn p| ≥ n! n . Our proof is relatively short and self-contained (i.e. we only use basic properties of hyperbolic polynomials ). As the van de...

متن کامل

A Polynomial-Time Algorithm to Approximate the Mixed Volume within a Simply Exponential Factor

Let K = (K1, . . . ,Kn) be an n-tuple of convex compact subsets in the Euclidean space R, and let V (·) be the Euclidean volume in R. The Minkowski polynomial VK is defined as VK(λ1, . . . , λn) = V (λ1K1+, · · · ,+λnKn) and the mixed volume V (K1, . . . ,Kn) as V (K1, . . . ,Kn) = ∂ ∂λ1...∂λn VK(λ1K1+, · · · ,+λnKn). Our main result is a poly-time algorithm which approximates V (K1, . . . ,Kn)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008